Codons Release 1

Andrew Philip Freiburger

May 06, 2022

CONTENTS

1	Installation	3
2	Contents	5
	2.1 Codons API	5
	2.2 Execution	9

The Codons module is a lightweight tool for a) conducting transcription and translation of genetic sequences, either from a FASTA formated file or a string; b) making and reading FASTA or multi-FASTA files of genetic and protein sequences; and c) conducting BLAST searches of protein and nucleotide sequences. Example Notebooks of these features are offered in the "examples" directory of the Codons GitHub repository.

CHAPTER

ONE

INSTALLATION

The following command installs Codons in a command prompt/terminal environment:

pip install codons

CHAPTER

TWO

CONTENTS

2.1 Codons API

2.1.1 Codons()

The data environment, in a Python IDE, is defined:

- *sequence* str: optionally specifies the genetic sequence that will be processed through subsequent functions. The sequence can alternatively be provided ad hoc to each function.
- *codons_table* str: specifies the framework for translating codons into amino acids, where the standard translation table is used by default.
- *amino_acids_form* str: specifies whether the amino acid full_name, three_letter, or one_letter nomenclature will be used in the protein sequence.
- hyphenated bool: specifies whether amino acid residues of the protein sequence are delimited by hyphens, where None defaults to True for amino_acids_form = full_name and amino_acids_form = three_letter and False for amino_acids_for = one_letter.
- verbose & printing bool: specifies whether troubleshooting information or results will be printed, respectively.

read_fasta()

A FASTA-formatted file is parsed into the constituent sequences and descriptions:

- fasta_path str: The path to a FASTA file that will be loaded, parsed, and returned.
- fasta_link str: The URL link to a FASTA file that will be imported, parsed, and returned.

Returns:

- sequences & descriptions list: The sequences and descriptions that are contained within the FASTA file.
- *fasta_file* str: The original FASTA file as a string.

make_fasta()

A simple function that constructs, returns, and optionally exports a FASTA-formatted file from the parameterized description and sequence:

fasta_file = cd.make_fasta(sequence, description = 'sequence', export_path = None):

- sequence str: The genetic or protein sequence that will constitute the FASTA file.
- *description* str: A description of the sequence that will be the first line of the FASTA file, which is appended with the length of each respective sequence in the FASTA file.
- *export_path* str: The path to which the FASTA file will be exported, where None specifies that the file will not be exported.

Returns:

• *fasta_file* str: The generated FASTA file.

complement()

A simple function that constructs and returns the complementary strand for a parameterized genetic sequence:

fasta_file = cd.complement(sequence = None, dna = True):

- *sequence* str: The genetic sequence for which the complemenentary strand will be determined.
- *dna* bool: specifies whether the parameterized strand is DNA or RNA.

Returns:

• *complementary_strand* str: The complementary genetic sequence.

transcribe()

A genetic sequence is converted from DNA -> RNA, or RNA -> DNA, where the directionality of the conversion is automatically listed in the FASTA description:

- *sequence* str: The genetic sequence that will be transcribed. The sequence is case-insensitive, and can even possess line numbers or column-spaces, which the code ignores. The parameterization of None defaults to the sequence that was initially loaded into the Codons object.
- *description* str: A description of the genetic sequence that will be added to the FASTA-formatted output of the function.
- *fasta_path & fasta_link* str: The path or URL link to a FASTA file that will be transcribed.

Returns:

• *transcribed_sequence* str: The translated sequence.

find_start()

Determines the index of the next start codon:

```
index = cd.find_start(i, sequence):
```

- *i* int: The string index of the sequence after which a start codon will be searched.
- *sequence* str: The genetic sequence in which the start codon will be search.

Returns:

• *index* int: The index of the next start codon.

translate()

A genetic sequence is translated into proteins that is coded by the genetic code:

```
proteins = cd.translate(sequence = None, fasta_path = None, fasta_link = None, organism_

→= 'bacteria', start_codons = None, all_possible_proteins = False,

open_reading_frames = True, filter_protein_size = 30, sense_

→strand_translation = False)
```

- *sequence* str: The genetic sequence , of either DNA or RNA, that will be translated into a protein sequence. The sequence is case-insensitive, and can even possess line numbers or column-spaces, which the code ignores. The absence of a passed sequence executes the sequence that is loaded into the Codons object.
- *fasta_path & fasta_link* str: The path or URL link to a FASTA file that will be translated.
- organism str: specifies the type of organism whose genome is being translated, which informs which set of default start codons will be used: ['ATG', 'AUG', 'GTG', "GUG"] for bacteria or ['ATG', 'AUG'] for virus.
- *start_codons* list: specifies the start codons that will be used, where None defaults to those from the organism selection.
- *all_possible_proteins* bool: specifies whether all possible proteins from a given genetic sequence will be translated, instead of linearly reading the sequence.
- *open_reading_frames* bool: specifies whether each of the three possible open reading frames for a specified sequence will be translated. The resultant proteins will be distinguished in their description for what open reading frame generated their translation.
- *filter_protein_size* int: specifies the peptide length below which a translated peptide will be excluded from the set of predicted proteins.
- *sense_strand_translation* bool: specifies whether the sense strand, complementary to the parameterzied sequence, will be translated as well.

blast_protein()

A protein sequence or a FASTA-formatted file of protein sequences is searched in through the BLAST database of the NIH for information about the protein(s):

- *sequence* str: The protein sequence that will be searched through the BLAST database. The sequence is caseinsensitive, and can even possess line numbers or column-spaces. The sequence must be < 1000 amino acids in length.
- *database* str: The BLAST database that will be searched for the protein sequence. Permissible options include: nr, refseq_select, refseq_protein, landmark, swissprot, pataa, pdb, env_nr, tsa_nr.
- description str: A description of the protein sequence that will be added to the FASTA-formatted output.
- *fasta_path* & *fasta_link* str: The path or URL link to a protein FASTA or multi-FASTA file that will be systematically searched.
- *export_name* & *export_directory* str: The name of the folder and directory to which the scraped BLAST data will be saved in iterations of protein_blast_results.xml XML files. The None values enable the code to construct a unique folder name that describes the contents and saves it to the current working directory.

Returns

• *protein_blast_results list*: The BLAST search results, which can be further investigated by the *Bio.Blast.NCBIXM* API.

blast_nucleotide()

A genetic sequence or a FASTA-formatted file of genetic sequences is searched though the BLAST database of the NIH for information about the sequence(s):

- *sequence* str: The genetic sequence, of either DNA or RNA, that will be searched through BLAST. The sequence is case-insensitive, and can even possess line numbers or column-spaces, which the code ignores. The absence of a passed sequence executes the sequence that is loaded into the Codons object.
- *database* str: The BLAST database that will be searched for the nucleotide sequence. Permissible options include: nr, nt, refseq_select, refseq_rna, refseq_representative_genomes, wgs, refseq_genomes, est, SRA, TSA, HTGS, pat, pdb, RefSeq_Gene, gss, dbsts.
- *description* str: A description of the genetic sequence that will be added to the FASTA-formatted output of the function.
- *fasta_path* & *fasta_link* str: The path or URL link to a genetic FASTA or multi-FASTA file that will be systematically searched.
- *export_name* & *export_directory* str: The name of the folder and directory to which the scraped BLAST data will be saved in a file: nucleotide_blast_results.xml. The None values enable the code to construct a unique folder name that describes the contents and saves it to the current working directory.

Returns

• *nucleotide_blast_results list*: The BLAST search results, which can be further investigated by the *Bio.Blast.NCBIXM* API.

export()

Any sequences from the aforementioned functions, which reside in the Codons object, are exported as separate files in the same folder:

cd.export(export_name = None, export_directory = None)

- *export_name* str: optionally specifies a name for the folder of exported content, where *None* enables the code to design a unique folder name for simulation and descriptive tags of its content.
- *export_directory* str: optionally specifies a path to where the folder will be exported, where *None* selects the current working directory.

Accessible content

The Codons object retains numerous components that are accessible to the user:

- *genes* dict: A dictionary of all genes in the genetic sequence, with sub-content of a) the list of all of its Codons; and b) its protein sequence and mass.
- *protein_fasta* & *gene_fasta* str: Assembled FASTA-formatted files for the translated proteins of a parameterized genetic sequence and for the parameterized genetic sequence, respectively.
- *transcribed_sequence* & *sequence* str: The transcribed genetic sequence from the transcription() function and the genetical sequence that is used in any of the Codons functions, respectively.
- amino_acid_synonyms dict: The synonyms for each amino acid, with keys of the full amino acid name.
- codons_table & changed_codons dict: The translation table between genetic codons and amino acid residues, which is accessed with case-insensitivity, and changed codon meanings in that table by the user, respectively.
- *missed_codons* dict: A collections of the codons that were parsed yet were not identified by the codons_table.
- paths & parameters dict: Collections of the paths and parameters are defined during use of Codons.
- *export_path* str: The complete export path for the Codons contents.
- *protein_blast_results* & *nucleotide_blast_results* list: The BLAST search results for searched proteins and nucleotides, respectively, which can be further investigated by the *Bio.Blast.NCBIXM* API.

2.2 Execution

Codons is executed through the following sequence of the aforementioned functions, which is exemplified in the example Notebook of our GitHub repository: